264 research outputs found

    Enabling Scalable SFCs in Kubernetes with eBPF-based Cross-Connections

    Get PDF
    Service Function Chains (SFCs) are composed of an ordered set of Network Functions (NFs) that provide network services to the handled traffic. However, traffic is highly variable over time, thus telco operators need to deploy scalable chains that can quickly and easily adapt to the load fluctuations. Although Kubernetes has already brought benefits in terms of increased scalability and flexibility to general-purpose applications, it is not natively suitable for network workloads since it lacks some functionalities required by network services. This paper presents a simple, cloud-native architecture that integrates SFCs in Kubernetes, with the aim of seamlessly leveraging cloud-native features such as horizontal autoscaling. The solution is based on flexible cross-connections, namely logical links that connect adjacent network functions, which can promptly adapt the distribution of the network traffic to the existing network functions in case of scale in/out events affecting the number of NF instances. The architecture has been validated with an open-source proof-of-concept implementation based on dedicated Kubernetes operators and an eBPF load balancer, demonstrating the feasibility and the efficiency of the proposed approach

    Creating disaggregated network services with eBPF: the Kubernetes network provider use case

    Get PDF
    The eBPF technology enables the creation of custom and highly efficient network services, running in the Linux kernel, tailored to the precise use case under consideration. However, the most prominent examples of such network services in eBPF follow a monolithic approach, in which all required code is created within the same program block. This makes the code hard to maintain, to extend, and difficult to reuse in other use cases. This paper leverages the Polycube framework to demonstrate that a disaggregated approach is feasible also with eBPF, with minimal overhead, introducing a larger degree of code reusability. This paper considers a complex network scenario, such as a complete network provider for Kubernetes, presenting the resulting architecture and a preliminary performance evaluation

    Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    Get PDF
    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression. To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and three-dimensional cultures of MCF-10â–‘A cells. We show that upon Dbl expression MCF-10â–‘A cells undergo EMT. In addition, we found that Dbl overexpression sustain

    eBPF: A New Approach to Cloud-Native Observability, Networking and Security for Current (5G) and Future Mobile Networks (6G and Beyond)

    Get PDF
    Modern mobile communication networks and new service applications are deployed on cloud-native platforms. Kubernetes (K8s) is the de facto distributed operating system for container orchestration, and the extended version of the Berkeley Packet Filter (eBPF)- in the Linux (and MS Windows) kernel- is fundamentally changing the approach to cloud-native networking, security, and observability. In this paper, we introduce what eBPF is, its potential for Telco cloud, and review some of the most promising pricing and billing models applied to this revolutionary operating system (OS) technology. These models include schemes based on a data source usage model or the number of eBPF agents deployed on the network, linked to specific eBPF modules. These modules encompass network observability, runtime security, and power dissipation monitoring. Next, we present our eBPF platform, named Sauron in this work, and demonstrate how eBPF allows us to write custom code and dynamically load eBPF programs into the kernel. These programs enable us to estimate the energy consumption of cloud-native functions, derive performance counters and gauges for transport networks, 5G applications, and non-access stratum protocols. Additionally, we can detect and respond to unauthorized access to cloud-native resources in real-time using eBPF. Our experimental results demonstrate the technical feasibility of eBPF in achieving highly performant monitoring, observability, and security tooling for current mobile networks (5G, 5G Advanced) as well as future networks (6G and beyond)

    Septic cardiomyopathy

    Get PDF
    Depression of left ventricular (LV) intrinsic contractility is constant in patients with septic shock. Because most parameters of cardiac function are strongly dependent on afterload, especially in this context, the cardiac performance evaluated at the bedside reflects intrinsic contractility, but also the degree of vasoplegia. Recent advances in echocardiography have allowed better characterization of septic cardiomyopathy. It is always reversible providing the patient's recovery. Unlike classic cardiomyopathy, it is not associated with high filling pressures, for two reasons: improvement in LV compliance and associated right ventricular dysfunction. Although, it is unclear to which extent it affects prognosis, a hyperkinetic state is indicative of a profound and persistent vasoplegia associated with a high mortality rate. Preliminary data suggest that the hemodynamic response to a dobutamine challenge has a prognostic value, but large studies are required to establish whether inotropic drugs should be used to treat this septic cardiac dysfunction

    Greater cardiac response of colloid than saline fluid loading in septic and non-septic critically ill patients with clinical hypovolaemia

    Get PDF
    Background and objective: The haemodynamics of crystalloid and colloid fluid loading may depend on underlying disease, i.e. sepsis versus non-sepsis. Design and setting: A single-centre, single-blinded, randomized clinical trial was carried out on 24 critically ill sepsis and 24 non-sepsis patients with clinical hypovolaemia, assigned to loading with normal saline, gelatin 4%, hydroxyethyl starch 6% or albumin 5% in a 90-min (delta) central venous pressure (CVP)-guided fluid loading protocol. Transpulmonary thermodilution was done each 30 min, yielding, among others, global end-diastolic volume and cardiac indices (GEDVI, CI). Results: Sepsis patients had hyperdynamic hypotension in spite of myocardial depression and dilatation, and greater inotropic/vasopressor requirements than non-sepsis patients. Independent of underlying disease, CVP and GEDVI increased more after colloid than saline loading (P < 0.018), so that CI increased by about 2% after saline and 12% after colloid loading (P = 0.029). The increase in preload-recruitable stroke work was also greater with colloids and did not differ among conditions. Conclusion: Fluid loading with colloids results in a greater linear increase in cardiac filling, output and stroke work than does saline loading, in both septic and non-septic clinical hypovolaemia, in spite of myocardial depression and presumably increased vasopermeability potentially decreasing the effects of colloid fluid loading in the former. © The Author(s) 2010

    Biological/Biomedical Accelerator Mass Spectrometry Targets. 1. Optimizing the CO2 Reduction Step Using Zinc Dust

    Get PDF
    Biological and biomedical applications of accelerator mass spectrometry (AMS) use isotope ratio mass spectrometry to quantify minute amounts of long-lived radioisotopes such as 14C. AMS target preparation involves first the oxidation of carbon (in sample of interest) to CO2 and second the reduction of CO2 to filamentous, fluffy, fuzzy, or firm graphite-like substances that coat a −400-mesh spherical iron powder (−400MSIP) catalyst. Until now, the quality of AMS targets has been variable; consequently, they often failed to produce robust ion currents that are required for reliable, accurate, precise, and high-throughput AMS for biological/biomedical applications. Therefore, we described our optimized method for reduction of CO2 to high-quality uniform AMS targets whose morphology we visualized using scanning electron microscope pictures. Key features of our optimized method were to reduce CO2 (from a sample of interest that provided 1 mg of C) using 100 ± 1.3 mg of Zn dust, 5 ± 0.4 mg of −400MSIP, and a reduction temperature of 500 °C for 3 h. The thermodynamics of our optimized method were more favorable for production of graphite-coated iron powders (GCIP) than those of previous methods. All AMS targets from our optimized method were of 100% GCIP, the graphitization yield exceeded 90%, and δ13C was −17.9 ± 0.3‰. The GCIP reliably produced strong 12C− currents and accurate and precise Fm values. The observed Fm value for oxalic acid II NIST SRM deviated from its accepted Fm value of 1.3407 by only 0.0003 ± 0.0027 (mean ± SE, n = 32), limit of detection of 14C was 0.04 amol, and limit of quantification was 0.07 amol, and a skilled analyst can prepare as many as 270 AMS targets per day. More information on the physical (hardness/color), morphological (SEMs), and structural (FT-IR, Raman, XRD spectra) characteristics of our AMS targets that determine accurate, precise, and high-hroughput AMS measurement are in the companion paper
    • …
    corecore